Handwritten Signature Verification Using Hidden Markov Models
نویسنده
چکیده
In this paper we present the work developed on offline signature verification using Hidden Markov Models (HMM)[1]. HMM is a well-known technique used by other biometric features, for instance, in speaker recognition and dynamic or on-line signature verification. Our goal here is to extend Left-to-Right (LR)-HMM to the field of static or off-line signature processing using results provided by image connectivity analysis. The chain encoding of perimeter points for each blob obtained by this analysis is an ordered set of points in the space, clockwise around the perimeter of the blob. We discuss two different ways of generating the models depending on the way the blobs obtained from the connectivity analysis are ordered. Finally, two LR-HMM models are trained using the parameters obtained by the mentioned techniques. Verification results of the two techniques are compared and some improvements are proposed.
منابع مشابه
Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملA New On-Line Signature Verification Algorithm Using Variable Length Segmentation and Hidden Markov Models
In this paper, a new on-line handwritten signature verification system using Hidden Markov Model (HMM) is presented. The proposed system segments each signature based on its perceptually important points and then computes for each segment a number of features that are scale and displacement invariant. The resulted sequence is then used for training an HMM to achieve signature verification. Our ...
متن کاملHandwritten Signature Verification Using Complementary Statistical Models
This paper describes a system for performing handwritten signature verification using complementary statistical models. The system analyses both the static features of a signature (e.g., shape, slant, size), and its dynamic features (e.g., velocity, pen-tip pressure, timing) to form a judgment about the signer’s identity. This approach’s novelty lies in combining output from existing Neural Net...
متن کاملOnline Handwritten Signature Verification Using Hidden Markov Models
Most people are used to signing documents and because of this, it is a trusted and natural method for user identity verification, reducing the cost of password maintenance and decreasing the risk of eBusiness fraud. In the proposed system, identity is securely verified and an authentic electronic signature is created using biometric dynamic signature verification. Shape, speed, stroke order, of...
متن کاملEstimating the Pen Trajectories of Static Handwritten Scripts using Hidden Markov Models
Individuals can be identified by their handwriting. Signatures are, for example, currently used as a biometric identifier on documents such as cheques. Handwriting recognition is also applied to the recognition of characters and words on documents—it is, for example, useful to read words on envelopes automatically, in order to improve the efficiency of postal services. Handwriting is a dynamic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012